Proyecto Final - Turinmachin
Recreación del minijuego de matemáticas de Brain-Age usando redes neuronales
|
#include <utec/algebra/tensor.h>
#include <utec/nn/activation.h>
#include <utec/nn/dense.h>
#include <utec/nn/loss.h>
#include <utec/nn/neural_network.h>
#include <utec/nn/optimizer.h>
#include <catch_amalgamated.hpp>
#include <random>
#include <sstream>
#include <utec/nn/kan.h>
Classes | |
class | Dense< T > |
class | NeuralNetwork< T > |
Clase que representa una red neuronal completamente conectada. More... | |
class | Sigmoid< T > |
Capa de activación Sigmoid. Convierte cada valor en el rango (0, 1) abierto usando la función logística. No tiene parámetros entrenables. More... | |
class | Kan< T > |
Functions | |
TEST_CASE ("neural network predict simple", "[neural]") | |
TEST_CASE ("Dense + Sigmoid with batch size 2", "[neural]") | |
TEST_CASE ("Dense layer with constant input", "[neural]") | |
TEST_CASE ("Empty network returns input", "[neural]") | |
TEST_CASE ("Kan layer basic forward", "[kan]") | |
TEST_CASE ("neural network trains and reduces loss", "[neural][train]") | |
TEST_CASE ("neural network save/load consistency", "[neural][save]") | |
TEST_CASE ("neural network with Kan layer", "[neural][kan]") | |
TEST_CASE ("neural network backward call", "[neural][backward]") | |
TEST_CASE ("neural network learns linear function f(x) = 2x", "[neural][train]") | |
TEST_CASE ("neural network learns sin(x) using ReLU", "[neural][train]") |
TEST_CASE | ( | "Dense + Sigmoid with batch size 2" | , |
"" | [neural] ) |
TEST_CASE | ( | "Dense layer with constant input" | , |
"" | [neural] ) |
TEST_CASE | ( | "Empty network returns input" | , |
"" | [neural] ) |
TEST_CASE | ( | "Kan layer basic forward" | , |
"" | [kan] ) |
TEST_CASE | ( | "neural network backward call" | , |
"" | [neural][backward] ) |
TEST_CASE | ( | ) |
TEST_CASE | ( | "neural network learns sin(x) using ReLU" | , |
"" | [neural][train] ) |
TEST_CASE | ( | "neural network predict simple" | , |
"" | [neural] ) |
TEST_CASE | ( | "neural network save/load consistency" | , |
"" | [neural][save] ) |
TEST_CASE | ( | "neural network trains and reduces loss" | , |
"" | [neural][train] ) |
TEST_CASE | ( | "neural network with Kan layer" | , |
"" | [neural][kan] ) |