Proyecto Final - Turinmachin
Recreación del minijuego de matemáticas de Brain-Age usando redes neuronales
Loading...
Searching...
No Matches
test_nn.cpp File Reference
#include <utec/algebra/tensor.h>
#include <utec/nn/activation.h>
#include <utec/nn/dense.h>
#include <utec/nn/loss.h>
#include <utec/nn/neural_network.h>
#include <utec/nn/optimizer.h>
#include <catch_amalgamated.hpp>
#include <random>
#include <sstream>
#include <utec/nn/kan.h>
Include dependency graph for test_nn.cpp:

Classes

class  Dense< T >
class  NeuralNetwork< T >
 Clase que representa una red neuronal completamente conectada. More...
class  Sigmoid< T >
 Capa de activación Sigmoid. Convierte cada valor en el rango (0, 1) abierto usando la función logística. No tiene parámetros entrenables. More...
class  Kan< T >

Functions

 TEST_CASE ("neural network predict simple", "[neural]")
 TEST_CASE ("Dense + Sigmoid with batch size 2", "[neural]")
 TEST_CASE ("Dense layer with constant input", "[neural]")
 TEST_CASE ("Empty network returns input", "[neural]")
 TEST_CASE ("Kan layer basic forward", "[kan]")
 TEST_CASE ("neural network trains and reduces loss", "[neural][train]")
 TEST_CASE ("neural network save/load consistency", "[neural][save]")
 TEST_CASE ("neural network with Kan layer", "[neural][kan]")
 TEST_CASE ("neural network backward call", "[neural][backward]")
 TEST_CASE ("neural network learns linear function f(x) = 2x", "[neural][train]")
 TEST_CASE ("neural network learns sin(x) using ReLU", "[neural][train]")

Function Documentation

◆ TEST_CASE() [1/11]

TEST_CASE ( "Dense + Sigmoid with batch size 2" ,
"" [neural] )
Here is the call graph for this function:

◆ TEST_CASE() [2/11]

TEST_CASE ( "Dense layer with constant input" ,
"" [neural] )
Here is the call graph for this function:

◆ TEST_CASE() [3/11]

TEST_CASE ( "Empty network returns input" ,
"" [neural] )
Here is the call graph for this function:

◆ TEST_CASE() [4/11]

TEST_CASE ( "Kan layer basic forward" ,
"" [kan] )
Here is the call graph for this function:

◆ TEST_CASE() [5/11]

TEST_CASE ( "neural network backward call" ,
"" [neural][backward] )
Here is the call graph for this function:

◆ TEST_CASE() [6/11]

TEST_CASE ( )
Here is the call graph for this function:

◆ TEST_CASE() [7/11]

TEST_CASE ( "neural network learns sin(x) using ReLU" ,
"" [neural][train] )
Here is the call graph for this function:

◆ TEST_CASE() [8/11]

TEST_CASE ( "neural network predict simple" ,
"" [neural] )
Here is the call graph for this function:

◆ TEST_CASE() [9/11]

TEST_CASE ( "neural network save/load consistency" ,
"" [neural][save] )
Here is the call graph for this function:

◆ TEST_CASE() [10/11]

TEST_CASE ( "neural network trains and reduces loss" ,
"" [neural][train] )
Here is the call graph for this function:

◆ TEST_CASE() [11/11]

TEST_CASE ( "neural network with Kan layer" ,
"" [neural][kan] )
Here is the call graph for this function: